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 Abstract 

  

Introduction. Analytical studies of Greek-style 

yoghurt manufacturing methods, formation and 

physicochemical characteristics of acid milk gels and 

factors that define yogurt quality are presented.  

Material and methods. The review is based on all the 

most important scientific papers ever published on the 

subject.  

Results and discussion. Different yoghurt production 

methods: traditional methods based on mechanical 

separators, methods based on membrane processes and 

methods based on direct recombination, give product with 

differences in properties. Two of the most important 

parameters: the textural attributes and the water holding 

capacity define yogurt quality and determine consumer 

acceptance. Numerous manufacturing parameters, such as 

severe heat treatments, excessive whey protein to casein 

ratios, high incubation temperatures, certain types of starter 

cultures and the use of excessive amounts of starter culture, 

are associated with textural defects of stirred yogurt like 

graininess (particles) or surface roughness (irregularities in 

the yogurt matrix). This method of direct recombination has 

advantages over others, because it is more environmentally 

friendly and increases the nutritional value of the finished 

product. Still, rheological properties of recombined 

concentrated yogurt are different from those of strained 

yogurt. Usually they form weaker gels than those made by 

traditional or UF methods. Different dry dairy ingredients 

(especially with elevated content of whey protein) should 

be used for production of concentrated yogurt.   

Conclusions. Future research should be focused on the 

production of concentrated yogurt by direct recombination. 
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1. Introduction 

 
Yogurt is defined as the “food produced by culturing one or more of the optional dairy 

ingredients [cream, milk, partially skimmed milk or skimmed milk] with a characterizing 

bacterial culture that contains the lactic acid-producing bacteria, Lactobacillus bulgaricusand 

Streptococcus thermophilus” [1]. Yogurts differ according to their chemical composition, 

method of production, flavour used and the nature of post-incubation processing [2]. There 

are substantial differences in composition of Greek-style yoghurts measured in products in 

different countries. The carbohydrate, fat and protein contents ranged between 1–12, 0–20 

and 3.3–11 g/100 g, respectively [3].  

Greek-style yogurt, also known as strained yogurt, concentrated yogurt or thick yogurt, 

is a semisolid fermented milk product derived from yogurt by draining away part of its whey. 

As a result of this draining action, the final product has higher total solids and lower lactose 

contents than regular yogurt (Table 1).  
 

Table 1 

Typical chemical compositions (g 100g -1) of industrial full 

and low-fat strained yogurt 
 

Composition Full-fat Low-fat 

Total solids 22.0 14.3 

Protein 4.9 9.9 

Fat 10.1 0.2 

Carbohydrate 6.0 3.5 

Ash 1.0 0.6 

Source: Tamime (2003) [61]. 



───Food Technology ─── 

─── Ukrainian Food Journal.   2020.  Volume 9. Issue 1 ─── 9 

The product has a cream/white color, a soft and smooth body, good spreadability with 

little syneresis and a flavor that is clean and slightly acidic [4]. Concentrated yogurt is widely 

consumed in the Middle East and Balkan regions [5, 6]. Evidence of its production can be 

found in many countries in Turkestan, the Balkans, the eastern Mediterranean, and the Indian 

subcontinent [7]. Table 2 shows the variety of names by which this product is known in 

different countries.  
 

Table 2  

Synonyms for concentrated yogurt in different countries 
 

Traditional names Countries/Regions 

Labneh, labaneh, lebneh, labna Eastern Mediterranean 

Ta, than Armenia 

Laban zeer Egypt, Sudan 

Stragisto, sakoulas, tzatziki Greece 

Torba, suzme Turkey 

Syuzma Russia 

Mastou, mast Iraq, Iran 

Basa, zimne, kiselo, mleko-slano Yugoslavia, Bulgaria 

Ititu Ethiopia 

Greek-style United Kingdom 

Chakka, shrikhand India 

Ymer Denmark 

Skyr Iceland 
Source: Tamime& Robinson (2007a) [7]. 

 

Strained yogurt has a higher lactic acid concentration than normal yogurt (1.8–2.0% as 

lactic acid). As a result, it presents a better keeping quality than the latter form [8-10]. High 

lactic acid concentrations can be expected to curtail the growth of bacterial pathogens, but 

yeasts, moulds and some lactic acid bacteria can still contribute to spoilage problems. At     7 

°C, concentrated yogurt can be kept for two weeks [4]. Any sharp taste resulting from the high 

lactic acid concentration will be masked by diacetyl produced during fermentation; and by 

the high fat content, which is typically around 10%, and [5, 9].Furthermore, concentrated 

yogurt has superior nutritional properties to those of regular yogurt: it has higher protein 

[2.5x] and mineral [1.5x] concentrations; a higher number of viable lactic acid bacteria [there 

is a tendency for these bacteria to be retained in the crud during the concentration process]; 

a very low lactose concentration, which makes strained yogurt even more suitable for lactose 

intolerant individuals than regular yogurt; and a fat content which can be varied according to 

consumer demand [4, 11–14]. The perceived nutritional benefits and storage characteristics 

of Greek-style yogurt led to its increasing popularity and economic importance during the 

last decade of the past century [15–17]. Nowadays, concentrated yogurt is establishing as a 

popular nutritious product possessing a healthy image equal to or greater than that of regular 

yogurt [4, 6]. The CODEX ALIMENTARIUS classifies strained yogurt as a type of 

concentrated fermented milk and its composition and quality standards  are described in: 

CODEX STAN 243-2003 [18]. Yogurt, essentially from the Eastern hemisphere, has gained 

considerable popularity as a wholesome and nutritious food in America. Indeed, its health 

properties, which extend beyond nutrition, are now being recognized [19, 20]. Reported 

health benefits associated with yogurt and probiotic cultures include growth promotion, 

enhancement of mineral absorption, lactose digestion (the ability to reduce symptoms of 
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lactose intolerance), antimicrobial function (the ability to enhance resistance to colonization 

by pathogenic organisms), anticholesterol effect (the ability to reduce the risk of 

cardiovascular disease by lowering serum cholesterol), anticarcinogenic factor (the ability to 

reduce risk factors for colon cancer initiation), stimulation of the host immunological system, 

restoration of normal balance of gastrointestinal microflora, and positive contribution to 

longevity [19, 21–26]. Consumption of yoghurt, despite the relatively high content of 

saturated fat, has been lately linked with lower blood pressure, but the mechanism is unclear 

[27]. Added to this, yogurt is commonly supplemented with various functional ingredients, 

such as probiotics, prebiotics, fiber, plant sterol esters, omega-3 fatty acids, minerals and 

vitamins to impart an even healthier image to the final product [19]. The developments of 

new products, along with increased consumer awareness of the health benefits associated 

with yogurt cultures and probiotics, had led to a sharp increase in the per capita consumption 

of yogurt in Canada and the U.S. during the last decades. According to the Canadian Dairy 

Information Centre, Canadians consumed 9.87 liters (per capita) of yogurt in their diet in 

2018, almost twice as much as they had two decades ago [28]. The introduction of Greek 

yogurt changed American tastes in yogurt, which helped increase sales of the overall yogurt 

category. As of 2016, the Americas held a share of over 50 percent of the global Greek yogurt 

market. In contrast to conventional yogurt, the Greek type is bought equally by men and 

women and consumers are drawn to the creamy texture and its high protein content. The 

Greek yogurt category experienced tremendous growth in the United States over the past few 

years. Americans consumed 13.7 liters (per capita) of yogurt in their diet in 2017 with 37.8% 

of Greek-type share [29].   

 

 

2. General technology of yogurt manufacturing 
 

At present, there is a wide variety of yogurt types on the market [24, 30]. Yogurts are 

usually classified based on their fat content (full-fat, reduced-fat, and low-fat) and on the 

method of production and the physical structure of the coagulum (set or stirred yogurts). Set 

yogurt is the product formed when the fermentation of milk is carried out in a retail container, 

and the yogurt produced is in a continuous semisolid mass. In contrast, stirred yogurt results 

when the coagulum is produced from milk, and the gel structure is broken before cooling and 

packaging. Fluid yogurt can be considered as stirred yogurt of low viscosity [2]. The main 

processing steps involved in these two types of yogurt manufacturing (Figure 1) include the 

standardization of milk (fat and protein content), homogenization, milk heat treatment, 

incubation/fermentation, cooling, and storage [31]. 

 

2.1. Milk standardization 
 

Nowadays, three systems are available to standardize the fat and protein content of the 

milk base: (1) the addition of milk powders to liquid milk, (2) the evaporation of water from 

liquid milk under vacuum, (3) the removal of water from liquid milk by membrane processes 

[9]. Milk bases should be formulated to comply with regulations and meet consumer 

expectations [32]. Stabilizers (gelatin, starch, pectin) and sweeteners can also be added to 

further impact the physical properties of the final product [33]. Increasing the total solids 

increases the firmness, complex viscosity, storage modulus, fracture stress, apparent 

viscosity, oral viscosity, consistency index, and water holding capacity – WHC of the 

resultant gel [31, 34–46]. Thus, it improves the textural attributes of the gel, giving a higher 

sensory acceptability to the final product [12, 47–49]. 
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Figure 1. Main processing steps in the manufacture of set and stirred yogurt 

Source: Adapted fromLee & Lucey (2010) [31]. 

 

 

2.2. Homogenization 
 

Homogenization is the typical industrial process used to effect stabilization of the lipid 

phase against separation by gravity. During this process the average diameter of fat globules 

(3–4 m) is reduced to 1 or 2 m. As a result, the fat globules do not cream during the 

incubation of the yogurt. Because of the size reduction, there is usually a four-to-six-fold 

increase in the surface area [2]. Upon homogenization, the fat-globule membrane is 

destroyed, and caseins and whey proteins form the new surface layer of fat globules, which 

increases the number of possible structure-building components in yogurt made from 

homogenized milk. Homogenized milk fat globules act like protein particles due to the 
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presence of protein on the fat surface [31]. Therefore, homogenization also improves gel 

strength upon fermentation due to greater protein–protein interaction [24]. As the fat globule 

membrane is destroyed during homogenization, lipids are vulnerable to attack by lipase. To 

prevent lipolysis, milk must be pasteurized immediately after homogenization [2]. 

Homogenization pressures used are usually between 10 and 20 MPa and, since the efficiency 

of homogenization is much better when the fat phase is in a liquid state, the process is usually 

carried out at high temperatures (55oC to 80oC) [33]. 

 

2.3. Heat treatment 
 

Heat treatments, which are much more severe than fluid milk pasteurization, are 

necessary to: 

1. Generate a yogurt with the desired textural properties. Thus, the heating/holding regime 

both alters the physicochemical properties of the caseins and denatures the whey 

proteins, so that -lactoglobulin, in particular, may become attached to the casein 

micelles; this linkage improves the texture (set yogurt) or viscosity (stirred yogurt) of 

the final product. 

2. Cause some breakdown of the whey proteins to liberate free amino acids that stimulate 

the activity of the starter culture. 

3. Expel oxygen from the processed milk because, as the starter bacteria are 

microaerophilic, deaeration provides the correct environment for rapid growth. 

4. Kill any non-sporing pathogens that may be present, helping to ensure that yogurt 

retains its image as a “safe” product [9]. 
 

To meet these requirements, milk is generally heated, using a continuous plate heat 

exchanger, at 85 to 95 °C for 10 to 30 minutes [30]. According to Chandan and O’Rell [33], 

optimum results are obtained by using a heat treatment of 90–95 °C and a holding time of 5–

10 minutes. 

 

2.4. Incubation/fermentation 
 

After heat treatment, the milk base is cooled to the incubation temperature used for 

growth of the starter culture.An optimum temperature of the thermophilic lactic acid 

bacteria, i.e., Streptococcus ssp. thermophilus and Lactobacillus delbrueckii ssp. 

bulgaricus, is around 40–45 °C. Bacterial fermentation converts lactose into lactic acid, 

which reduces the pH of milk. During the acidification of milk, the pH decreases from 6.7 

to ≤4.6. In unheated milk gels, gelation occurs at around pH 4.9, while in heated milks 

gelation occurs at pH 5.2–5.4 (because denatured -lactoglobulin has a higher isoelectric 

point than casein) [31, 50, 51]. 

The essential flora of yogurt (Sc. thermophilus and Lb. delbrueckiissp. bulgaricus) 

displays an obligate symbiotic relationship during their growth in a milk medium. The rates 

of acid and flavor production by mixed yogurt cultures are considerably higher than by either 

of the two organisms grown separately [33, 41]. Lb. delbrueckiissp. bulgaricus hydrolyzes 

milk proteins, the caseins, thus releasing essential amino acids, including valine, which 

stimulate the growth of Sc. thermophilus. Initially, Sc. thermophilus grows rapidly, reducing 

the pH to around 5.4, which stimulates the growth of Lb. delbrueckii ssp. bulgaricus, which 

is acid-tolerant and produces large amounts of lactic acid, which reduces the pH.Sc. 

thermophilus uses oxygen during its growth, which makes oxidation–reduction potential 

more favorable for Lb. delbrueckii ssp. bulgaricus; it also produces purine, pyrimidine, CO2, 

formic acid, oxaloacetic acid, and fumaric acid that stimulate the growth of the lactobacillus 

[2, 33, 41]. During the growth in milk, L. delbrueckiissp. bulgaricusapparently exhibits a 
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preference for utilizing β-casein over other proteins as a nitrogen source, indicating that the 

type of protein is also an important factor influencing the growth of this culture [41]. 

Starter bacteria can continue to produce acid until a very low pH [e.g. ~4.0] is attained 

when bacteria become inhibited by the low pH; in practice bacterial gels are cooled when 

sufficient acidity has been attained [pH ~4.6]. The rate of pH change during fermentation or 

addition of acid is controlled by the acid-base buffering properties of milk [38]. 

 

2.5. Cooling and storage 
 

Since the yogurt organisms show limited growth activity around 10 °C, the primary 

objective of cooling is to drop the temperature of the coagulum from 30-45 °C to <10 °C as 

quickly as possible so as to control the final acidity of the product. The process of cooling 

yogurt may be carried out using one-phase or two-phase cooling [52]. In single-phase 

cooling, the temperature of fermenting milk is directly reduced from 43 °C to <10 °C. This 

model is more appropriate for plain set-type yogurt production. Two-phase cooling is widely 

employed for stirred-type yogurt production. In the first phase, fermenting milk is stirred 

gently in a tank to obtain a homogeneous body, and cooled to 20–24 °C. At this stage, fruit 

is added and the yogurt cups are filled. The filled cups are then cooled to <10 °C over a period 

of 10–12 hours [41]. To improve yogurt quality, the second stage of cooling should be carried 

out as slowly as possible over a 12-hour period [2]. The rate of cooling is of critical 

importance in obtaining a product with the desired textural quality. Cooling too quickly can 

cause a weak body and stimulate whey separation during cold storage [41]. Storing yogurt 

for 1-2 days improves the viscosity. During the first 24–48 hours of cold storage, an 

improvement in the physical characteristics of the coagulum is observed, mainly because of 

hydration and/or stabilization of casein micelles. Proper hydration is required to avoid 

syneresis. It is therefore important to delay the sale or distribution of yogurt for 24–48 hours 

[2]. 

 

 

3. Greek-style yogurt manufacturing methods 

 

Much of the concentrated yogurt consumer acceptability is dependent on its sensory 

properties, which in turn, seem to be heavily dependent on the method of processing of the 

material [14, 16, 53, 54]. Depending on the used process, Greek-style yoghurt can be 10 times 

better than traditional yoghurt to deliver probiotic bacteria. Fresh ultrafiltrated or 

centrifugated Greek-style yoghurts had between 3 and 7 times higher counts of Lb. helveticus 

and S. thermophilus than the regular stirred yoghurt [55]. Concentrated yogurt is traditionally 

manufactured by straining the natural set yogurt in cloth bags [56]. However, nowadays there 

are other methods available to manufacture this product in large volumes. The current 

methods available for manufacturing concentrated yogurt have been widely reviewed by 

Tamime and Robinson [7, 8, 57], Robinson and Tamime [58], Özer [59], Salji [21], 

Nsabimana et al. [4], Tamime [60, 61], Tamime and Marshall [62], Tamime et al. [63] and 

can be classified as follows:  

1. Traditional method (cloth bag) [10, 53, 64–73]. 

2. Methods based on mechanical separators [74–76]. 

3. Methods based on membrane processes [10, 53, 64–71, 77–81]. 

4. Methods based on direct recombination [53, 67–70, 82, 83]. 
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3.1. Traditional method 
 

The basic principle of using the traditional cloth bag method is to extract water from 

plain yogurt until the desired total solids level has been reached. The duration of drainage for 

yogurt in cloth bags takes about 15-20 hours at <10 °C. The whey separation can be achieved 

either by gravity drainage (small scale production) or by pressing (large scale production, 

i.e., by piling 25-kg bags on top of each other); however, the drainage time can be shortened 

by up to 6 hours by applying pressure of 2 kg kg-1 on the yogurt [59]. 

The sensory properties of the product made with this traditional system are excellent 

[9]. However, this method could be described as slow, labour intensive and unhygienic by 

the nature of the process, and the yield obtain is rather low due to residues left in the bag [9, 

10, 64, 82, 84]. Consequently, this system is not suitable for large-scale processing [21, 53]. 

Despite this, the traditional production method is still preferred in some countries in the 

Middle East, as the investment in mechanised systems of production is rather high [59]. 

 

3.2. Methods based on mechanical separators 
 

Mechanical separators have been used successfully for the industrial-scale production 

of strained yogurt [62]. Salji et al. [11, 85] reported the use of this method for factory-scale 

production in Saudi Arabia. This method requires the use of a nozzle or Quarg separator. 

Only, skimmed milk should be used when manufacturing yogurt in this way; if whole milk 

is used, the fat globules will clog the separator nozzles. However, recent developments in the 

design of centrifugal separators have made it feasible to use fermented whole milk to produce 

strained yogurt [61]. Producing concentrated yogurt by centrifugation is a two-step 

procedure. First, milk is fermented until it achieves the desired level of acidification (pH 4.6-

4.8). After acidification, fermented skimmed milk is stirred vigorously, heated up to 55–60 

°C to inactivate the culture and control the level of acidity, and cooled to 40 °C. Next, any 

large clots or clumps are removed by passing the fermentate through a metal sieve before it 

enters the separator. The fermented milk is also de-aerated for 15–20 minutes before entering 

the centrifuge to assist the separation of whey in the separator. Once in the separator, the 

fermented milk is concentrated to the desired total solids level. The concentrated product 

leaving the separator is blended with any source of fat or cream, to provide the desired fat 

level in the final product. Then it is cooled and packaged [4, 7, 8, 59–61]. Capacities of such 

separators are up to 6.5 tonnes h-1, depending on the composition of the milk used and the 

acidity of the fermented milk prior to concentration [61, 62].According to Dagher and Ali-

Ghariebeh [74], strained yogurt, produced from heated yogurt by centrifugation for 5 minutes 

at different speeds between 4, 000 and 11, 700g, had organoleptic characteristics similar to 

those of control samples made by the traditional method. 

 

3.3. Methods based on membrane processes 
 

Membrane techniques, especially ultrafiltration (UF), have been successfully used in 

the yogurt industry for the last 20-25 years [59, 81]. Production of strained yogurt by reverse 

osmosis (RO) has also been studied. However, previous scientific works revealed that using 

RO to produce concentrated yogurt created weaker structures which did not give gel 

properties close to those of concentrated yogurt made by the traditional method [53, 67–70, 

78]. Two different systems of UF have been used to produce concentrated yogurt: (a) the 

fermentation of UF retentate that has the solids content desired in the final product [79, 80, 

71], and (b) UF of yogurt at 40–50 °C [10, 66, 77] to produce a concentrated product with 

the desired total solids content [7]. Several scientific works studied the microstructures and 

rheological properties of concentrated yogurt obtained by these two UF methods [10, 64, 67–
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70, 78]. Greek yoghurts prepared by concentrating a milk base through UF to 13.8% 

exhibited a hard structure, low syneresis and a high protein and fat content [86]. Applying 

both, UF and straining, resulted yoghurts with required structural attributes while 

substantially reducing the generation of AW. Researchers concluded that the concentrated 

yogurt made from UF milk retentate had much greater firmness than the products 

manufactured using the traditional method or UF of yogurt [4, 7, 10, 61, 64]. The 

concentration of milk by UF before yogurt-making carries a risk of bitterness in the final 

product since the calcium content will be higher [59]. On the other hand, the quality of 

strained yogurt made by UF of warm yogurt closely resembles the traditional product in terms 

of elasticity, firmness, and structure [10, 61]. Unfortunately, UF of yogurt affects process 

efficiency due to permanent membrane fouling [81]. The manufacturing process is as 

follows: after the fermentation period, the warm yogurt is heated to 58-60 °C for 3 minutes 

in the plate heater exchanger, to inactivate the culture and control the level of acidity, cooled 

to 40 °C, concentrated in a two-to-four stage UF plant (depending on the desired degree of 

concentration), cooled in a plate cooler to about 20 °C and finally packaged [4]. According 

to Özer et al. [53] and Tamime et al. [10, 64], UF applications can be used as an industrial 

alternative to the traditional strained yogurt-making process. Several studies which have 

investigated the rheology of concentrated yogurt produced by a range of techniques for 

increasing total solids have concluded that compared to other techniques (such as RO and 

direct recombination), UF of yogurt gives the gel properties that are closest to those of the 

traditional product [53, 67, 78]. Other advantages of UF as compared with other conventional 

methods are: higher yield (10% increase), shortening of processing time (e.g., by 25%), 

reduced wheying-off, and easy automation and process control [4, 59]. In addition, when 

using UF instead of the traditional method, the volumes of milk and starter cultures are 

reduced by around 10% and 80%, respectively [59]. Due to all these advantages, a wide range 

of UF plants are now available on the market for the production of strained yogurt on a large 

scale [58, 60, 61]. 

 

3.4. Methods based on direct recombination 
 

 According to the Food and Agriculture Organization of the United Nations, a 

recombined milk product is a product resulting from the combining of milk-fat andmilk-

solids-non-fat in their preserved forms with or without the addition of water toachieve the 

appropriate milk product composition [87]. In order to eliminate the drainage stage during 

the manufacture of concentrated yogurt, it is feasible to manufacture this product from 

recombined dairy ingredients [59–61]. The process involves reconstituting powders in water, 

up to the total solids level required in the final product, and blending the reconstituted milk 

with anhydrous milk fat and stabilisers [61]. After the recombination is complete, the 

recombined milk is handled and processed in a similar way to the production of traditional 

yogurt [8]. The quality of recombined dairy products is directly related to the composition, 

properties, and microbiological standards of the ingredients used [83]. According to Gilles 

and Lawrence [82], good quality yogurt can be obtained from milk powders as long as the 

powders are free of off-flavours. Odet [88]] stated that there were no organoleptic differences 

between yogurt produced from recombined and fresh milks. The introduction of membrane 

techniques to the dairy industry has enabled the production of different types of milk powders 

containing diverse protein to lactose ratios and altered whey protein to casein ratios (e.g., 

milk retentate, milk permeate, whey retentate, and whey permeate powders) [89, 90]. The 

use of these latter powders has enabled the production of recombined dairy products 

containing high protein and low lactose contents, such as concentrated yogurt [14]. Several 

authors recommended using these types of powders to fortify the milk base during yogurt 
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production and/or to produce concentrated yogurt using recombination technology [36, 61, 

82, 91–93]. In order to obtain a recombined strained yogurt with good textural and 

physicochemical properties, experts recommend using heat-treated high protein dairy 

powders (with reduced lactose content) free of inhibitory substances that can slow or restrain 

the growth of lactic bacteria [82, 94, 95]. However, if processing steps include a high heat 

treatment, low-heated milk powders can also be used effectively to produce a good quality 

product [95]. Since recombined products generally contain high amounts of water, it is 

important to have a high quality water source. Excessively hard water can lead to problems 

with powder solubility and stability [95]. According to the recommendations from the 

International Dairy Federation (IDF), water used to recombine dairy products should not 

exceed the following maximum salt concentrations: total hardness, 100 g of calcium 

carbonate g-1; chloride, 100 g g-1; sulfate, 100 g g-1; nitrate, 45 g g-1 [96]. Nichols and 

Kozak [97] discussed in depth the importance of water used for recombining milk and milk 

products. Milk powders used for recombination are very stable and have a shelf-life of 12 

months at ambient temperatures without refrigeration, although storage at 20oC or below is 

recommended [98]. The long durability and good thermal stability of ingredients makes 

direct recombination a suitable option to provide a nutritious and high-quality source of dairy 

products in areas where a fresh raw milk supply is not readily available or is in short supply 

[17]. Because refrigeration and transportation may not be readily available in some regions, 

utilization of preserved milk ingredients may be the only viable means of producing dairy 

products [95]. Several authors [99–103] reported the use of recombination technology to 

produce milk and dairy products in developing countries where, as a result of 

geographic/climatic/economic conditions, setting up a conventional dairy industry base using 

local milk production is impractical [104]. On the other hand, in industrialized countries 

where there is a milk surplus, milk recombination offers the opportunity to transfer raw 

materials (milk powders, anhydrous milk fat, etc.) from surplus production areas to 

deficiency areas, in order to compensate for the abovementioned problems and to open up 

new markets [14, 96]. Therefore, it is believed that a widespread use of this technique to 

produce concentrated yogurt will potentially increase the international trade of powders high 

in protein and low in lactose [14, 89]. However, it is important to point out that indiscriminate 

distribution of dairy ingredients for recombining purposes can, under certain circumstances, 

be detrimental to local milk producers [104]. The production of concentrated yogurt by direct 

recombination offers important advantages over other industrial production methods. Direct 

recombination does not involve whey disposal problems (there is less environmental damage, 

and the yogurt produced is more nutritious because all whey proteins are retained in the final 

product) and requires low investment and production costs (depending on the local market) 

[89, 98]. However, several scientific publications stated that the rheological properties of 

recombined concentrated yogurt were different from those of strained yogurt produced by 

the traditional method or by UF [7, 8]. Özer et al. [53, 67, 69, 70] concluded that strained 

yogurt made by directly recombining full-cream milk powder to 23% (w/v) total solids 

formed weaker gels than those made by traditional or UF methods. Although numerous 

scientists have studied or reviewed the production of recombined concentrated yogurt [7, 8, 

53, 59–61, 67-70, 82, 83, 95], there is little evidence of the manufacture of recombined non-

fat strained yogurt. In the future it is crucial to find an effective formulation for producing a 

recombined non-fat, additive-free type of Greek-style yogurt.   
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4. Formation and physicochemical characteristics of acid milk gels 
 

Acid-induced milk gels are formed by aggregation of casein particles as the pH of milk 

decreases and the isoelectric point (pH 4.6) of casein is approached [105]. Acid casein gels have 

a particulate, heterogeneous structure, consisting of fairly large conglomerates and holes (void 

spaces where the aqueous phase is confined). These conglomerates are thought to be built of 

smaller ones, which, in turn, consist of casein particles aggregated in strands and nodes. This 

heterogeneity, which depends, e.g., on the temperature during gel formation, largely determines 

the mechanical properties of the gel [38, 106]. Casein gels are very dynamic and rearrangements 

of the clusters and particles forming the network may occur before or during gel formation [105]. 

The physical characteristics of these particulate gels are determined by both strong permanent 

bonds (covalent bonds: SH/S-S exchange) formed during the aggregation, and subsequent 

rearrangements of protein particles (noncovalent bonds: electrostatic, hydrophobic interactions 

and, probably, the ever-present Van der Waals attraction, as well as steric and entropic effects 

related to protein conformation). The balance between these strong and weak bonds controls the 

rheology of yogurt gels [53, 70, 106]. Milk protein gels are irreversible, in contrast to many other 

food gels. Although milk gels are usually classified as particle gels, it is now recognized that they 

are not simple particle gels because the internal structure of the casein particle plays an important 

role in the rheological properties of milk gels [37]. 

 

4.1. Casein micelle structure 
 

At least three types of models for the structure of casein micelles have been proposed. 

Schmidt [107] and Walstra [108] suggested a model that proposes that the micelle core is divided 

into discrete sub-units [sub-micelles] with distinctly different properties [37]. In this model, the 

individual caseins come together in their appropriate portions to form internal sub-micelles, if 

depleted in -casein, or external sub-units rich in -casein, colloidal calcium phosphate (CCP) is 

regarded as the cement which links these discrete sub-units together. Another model, proposed by 

Holt [109], regards the micelle as a mineralized, cross-linked protein gel in which the CCP 

nanoclusters are the agents responsible for cross-linking the proteins and holding the network 

together [110]. A major failing of these two models is their lack of a plausible mechanism for 

assembly, growth and, more importantly, termination of growth of the casein micelles. All such 

elements are in place in a recent model, proposed by Horne [110], which suggests a dual-binding 

(polycondensation-type) mechanism for gel assembly [37, 111]. In the dual-binding model, 

micellar assembly and growth take place by a polymerization process involving, as the name 

suggests, two distinct forms of bonding: crosslinking through hydrophobic regions of the caseins 

or bridging across CCP nanoclusters. Central to the model is the concept that micellar integrity 

and hence stability is maintained by a localized excess of hydrophobic attraction over electrostatic 

repulsion [111]. The energy of interaction between molecules present inside the micelle is 

calculated as the sum of electrostatic repulsion and hydrophobic attraction as 

𝐼𝐸 = 𝐸𝑅 + 𝐻𝐼                                                           (1) 

where, IE: interaction energy; ER: electrostatic repulsion; HI: hydrophobic interaction [110]. This 

model sees the micellar CCP not just as cross-links but also as neutralizing agents which, being 

positively charged, bind to negatively charged phosphoserine clusters to reduce the protein charge 

to the level where the attractive interactions between the hydrophobic regions of the caseins can 

be allowed to dominate [110]. Figure 2 illustrates the structure of the casein micelle according to 

the dual-binding model and can be used to explain the two types of linkage postulated between 

protein molecules. The first linkage is hydrophobic, where two or more hydrophobic regions from 

different molecules form a bonded cluster.  
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Figure 2. Dual-binding model of structure of casein micelle 

Bonding occurs between the hydrophobic regions, shown as rectangular bars, and by linkage of 

hydrophilic regions containing phosphoserine clusters to CCP clusters. Molecules of -casein limit 

further growth and are labeled with the letter ‘’. Source: Adapted from Horne (1998) [110]. 

 

The growth of these polymers is inhibited by the protein-charged residues whose 

repulsion pushes up the interaction free energy. Neutralization of the phosphoserine clusters 

by incorporation into the CCP diminishes that free energy as well as producing the second 

type of cross-linking bridge, since it is considered that up to four or more phosphoserine 

clusters from different casein molecules can be accommodated at each CCP nanocluster 

[Horne, 1998] [110]. Although the -casein molecules can interact via their hydrophobic 

domains with the hydrophobic regions of the other caseins, further growth beyond the -

casein is not possible because it possesses neither a phosphoserine cluster for linkage via 

CCP [the only phosphoserine residue in -casein lies in the macropeptide which forms the 

putative hairy layer deemed essential for micellar stability in all accepted models, thus, this 

residue cannot be involved in any cross-linking via CCP], nor another hydrophobic anchor 

point to extend the chain via this route. -Casein acts as a terminator for both types of growth. 

Unless circumvented by the growing network, it will become part of the surface structure of 

the micelle. Hence its surface location, a prime requirement for any structural model, arises 

naturally in this model [110]. This concept of a localized excess of hydrophobic attraction 

over electrostatic repulsion allows the visualization of micellar growth and successfully 

accommodates the response of the micelles to changes in pH, temperature, urea addition or 

removal of CCP by sequestrants, all in accordance with experimental observations [112]. 

Urea does not rupture the CCP linkages but disrupts the hydrophobic bonds, bringing about 

micellar disintegration. Further, micellar integrity is largely maintained when the CCP is 

dissolved out by acidification because the phosphoserine negative charges are neutralized by 

the acid medium. If the milk is dialyzed and the pH is then restored to that of the original 

milk, dissociation of the micelle complex is observed as the negative charges of the 

phosphoserine residues are not neutralized and the electrostatic repulsion effect predominates 

over the hydrophobic attraction. The same dissociation is observed at natural pH when the 

CCP is removed by sequestration with EDTA. Increasing pH from the natural value in milk 

leads to dissociation of the micelles. Whether this is due to conversion of the phosphoserine 

residues from singly to doubly negatively charged units which are no longer capable of 

linking to the CCP nanoclusters, or whether the increase in charge itself is sufficient to upset 

the balance of electrostatic repulsion and hydrophobic attraction in favour of electrostatic 
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repulsion and the micelles dissociate. Decreasing the temperature decreases the level of 

hydrophobic attraction and any -casein not linked through its phosphoserine cluster could 

then be released into the serum phase [110-112]. These facts suggests that CCP does not 

cement the micelle together, as described by the earlier models, but rather it helps to control 

and modulate the effects of calcium and charged groups on caseins. It is also clear that 

hydrophobic interactions and hydrogen bonding are important for micelle integrity [37]. 

 

4.2. Formation of acid milk gels 
 

As the pH of milk is reduced, CCP is dissolved, the micelle structure is altered (the 

charge on individual caseins is altered and the ionic strength of the solution increased) and 

caseins are liberated into the serum phase [38, 113]. The extent of liberation of caseins 

depends on the temperature at acidification (low temperatures results in a decrease in the 

level of hydrophobic attractions inside the casein micelle); at fermentation temperatures 

commonly used for yogurt manufacture (>30oC), no dissociation of casein likely occurs 

[113]. When the isoelectric point of caseins (pH ≈ 4.6) is approached, aggregation occurs and 

low-energy bonds, mainly hydrophobic, are progressively established between proteins 

[114]. Three pH regions in the acidification of milk from pH 6.7 to 4.6 can be distinguished: 

a. pH from 6.7 to 6. The decrease in pH causes a decrease in the net negative charge on 

the casein micelles, thereby reducing electrostatic repulsion. Only a relatively small 

amount of CCP is dissolved above pH 6.0, so the structural features of the micelles are 

relatively unchanged (e.g., size) [115]. 

b. pH from 6 to 5. As the pH of milk decreases further from pH 6.0 to 5.0, the net negative 

charge on casein micelles greatly decreases and the charged “hairs” of -casein may 

shrink (or curl up). This results in a decrease in electrostatic repulsion and steric 

stabilization, which are both responsible for the stability of casein micelles in the 

original milk. At pH ≤6.0 the rate of solubilization of CCP increases, which weakens 

the internal structure of casein micelles and increases the electrostatic repulsion 

between the exposed phosphoserine residues. In milk, CCP is completely solubilized in 

casein micelles by pH ~5.0 [31]. 

c. pH ≤ 5. When the pH of milk becomes close to the isoelectric point of casein (pH 

4.6), there is a decrease in the net negative charge on casein, which leads to a 

decrease in electrostatic repulsion between casein molecules. On the other hand, 

casein-casein attractions increase due to increased hydrophobic and electrostatic 

charge interactions (and van der Waals’ forces) [31, 50]. In unheated milk, gels gelation 

occurs at around pH 4.9, while in heated milks, gelation occurs at pH 5.2–5.4 (because 

denatured -lactoglobulin has a higher isoelectric point than casein) [31, 50, 51]. Casein 

particles aggregate as a result of (mainly) charge neutralization [50]. The acidification 

process results in the formation of a three-dimensional network consisting of clusters and 

chains of caseins [31]. 
 

Solubilization of CCP during the acidification process undoubtedly changes the 

structural integrity of the casein micelles [48]. When CCP is depleted from the micelle, the 

casein molecules will have more dispersed structures with a higher number of interaction 

sites [112]. Therefore, the loss of CCP from casein micelles dramatically influences the 

properties of casein gels [115]. If the acidification is proceeding slowly, then this may allow 

equilibration and rearrangement into localized denser structures with few linkages between, 

giving rise to weaker gels. More rapid drops in pH may lock the protein into a more dispersed 

structure with greater density of possibly stronger strands [112]. These statements are verified 

by the experimental work done by Lee and Lucey [116]. These authors reported that higher 
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inoculation rates resulted in lower fermentation times and stiffer gel networks. They support 

their results by stating that the solubilization of CCP in milk during acidification is a slow 

process, and may require a slightly lower pH to completely dissolve CCP under conditions 

of fast acidification. When CCP dissolves at a lower pH, caseins at this lower pH value may 

be less sensitive to excessive rearrangements (due to the fact that at lower pH values there 

will be lower electrostatic repulsion and higher hydrophobic interactions between casein 

particles); thus, stiffer gel networks are obtained. Consequently, the solubilization of CCP 

appears to alter the balance between viscous and elastic components in the gel network 

[37].Hydrophobic interactions are unlikely to play a direct role in the strength of acidgels as 

the stiffness of acid gels increases as the measurement temperature decreases. Cooling results 

in an increase in the stiffness of the gel, probably as a result of the swelling of casein particles 

(caused by the weaker hydrophobic interactions) and an increase in the contact area between 

particles. A similar trend occurs when lower incubation temperatures are used. The use of 

lower incubation temperatures leads to longer incubation times, but firmer and more viscous 

gels that are less prone to whey syneresis are formed. At a lower incubation temperature, 

there is an increase in the size of the casein particles because of a reduction in hydrophobic 

interactions which, in turn, leads to an increased contact area between the casein particles 

[50]. Higher incubation temperatures (i.e., higher gelation pH) also make the gel network 

more prone to rearrangements during gelation, and these changes can lead to greater whey 

separation [50, 116]. 

 

4.3. Effects of heat treatment on the formation of acid milk gels 
 

With the exception of proteose-peptone, whey proteins are very sensitive to heat 

treatment. Unlike caseins, whey proteins have three-dimensional structures or configurations. 

Each configuration is stabilized by hydrogen and hydrophobic bonds, and other forces. 

Secondary and tertiary structures of whey proteins tend to be broken down by heat treatment 

because heating weakens hydrogen and hydrophobic bonds [41]. Denaturation of whey 

proteins occur above 60 °C. At temperatures up to 90 °C, unfolding of the protein is rate-

limiting but further increases in the heating temperature result in only small increases in the 

rate of denaturation as aggregation of the proteins becomes rate-limiting [117]. Below 65 °C, 

at least in theory, denaturation or functional changes of whey proteins (mainly β-

lactoglobulin) are reversible, but above 70 °C irreversible functional changes in whey 

proteins occur [41]. The most abundant whey protein is -lactoglobulin in which a heat-

induced conformational change results in the exposure of a reactive thiol group (Figure 3).  

 
 

 
 

Figure 3. Schematic representation of -lactoglobulin denaturation: breakage of its tertiary 

structure and exposure of thiol groups 

Source: Adapted from Bylund (1995) [136]. 
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This thiol group can form disulfide bonds with other cysteine-containing proteins, such 

as -lactoglobulin or bovine serum albumin, or with proteins having disulfide bridges, such 

as -lactalbumin, - and s2-casein. The latter process occurs through thiol group-disulfide 

bridge exchange reactions, resembling a polymerization process in which heat-denatured -

lactoglobulin is the initiator. Interaction of -lactoglobulin with -casein, present at the 

exterior of the casein micelle, leads to coating of the casein micelles with -lactoglobulin. 

Interactions of -lactoglobulin with cysteine-containing serum caseins might lead to casein-

whey protein aggregates. Additionally, interactions of -lactoglobulin with cysteine-

containing whey proteins, such as -lactalbumin and -lactoglobulin molecules, result in the 

formation of whey protein aggregates [118]. Hydrogen bonding and electrostatic and 

hydrophobic interactions have also been suggested as major forces in whey protein 

aggregation [119]. To summarize, heat treatment of milk results in a complex mixture of 

native whey proteins and denatured whey proteins present as whey protein aggregates, 

casein-whey protein aggregates and whey protein coated casein micelles [118]. The 

association of denatured whey proteins to casein micelles significantly increases the casein 

micelle size [114, 119]. According to Pesic et al. [120], after exposing bovine milk to a severe 

heat treatment (90 °C; 10 minutes) at natural pH (6.71), about 30% of denatured whey 

proteins were involved in soluble complexes. Figure 4 shows a schematic representation of 

the effects of heat treatment and subsequent acidification on casein micelles and whey 

proteins present in skim milk.  

 

 
Figure 4. Schematic representation of the heating of skim milk and the subsequent acidification 

resulting in the formation of a protein network 

Source: Adapted from Vasbinderet al. (2003) [118]. 

 

 

The extent and rate of denaturation of whey proteins are determined by a number of 

factors. Amongst these are the pH value, the ionic strength and the ionic composition, the 

protein concentration and casein to whey protein ratio of the heat treated whey protein 

solution, and the duration and temperature of the heat treatment [121].Increasing the pH 

above the natural pH of milk markedly accelerates the rate of denaturation of -lactoglobulin. 

Generally a decrease in the pH of milk systems prior to heating results in an increased 

association between the denatured whey proteins and the casein micelle. Even small changes 

in pH can shift the distribution of the association of the denatured whey proteins with the 

casein micelle. For example, at a level of 95% whey protein denaturation, approximately 
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70% of denatured whey proteins are associated with the casein micelle at pH 6.55. This 

decrease to approximately 30% when the pH of milk prior to heating is 6.7. The difference 

in association level is reflected in the increase in the casein micelle size when milk is heated 

at the lower pH [117]. According to Vasbinder et al. [118], the denatured whey protein 

aggregates that form contain a ratio of -lactalbumin to -lactoglobulin which is 

representative of the ratio of total denatured whey proteins in milk. -lactalbumin is more 

easily incorporated in aggregates than it is involved in coating of micelles, while the whey 

protein coating of the casein micelles clearly contains more -lactoglobulin. Vasbinder and 

de Kruif [122] stated that at high pH, -lactoglobulin--lactoglobulin interactions causing 

whey protein aggregates are favoured over -casein--lactoglobulin interactions, while -

casein--lactoglobulin--lactoglobulin reactions hardly take place. At lower pH, formation 

of separate whey protein aggregates hardly occurs, but clusters of whey proteins are formed 

on the surface of the casein micelle. Apparently, at these conditions -casein-(-

lactoglobulin)n interactions are favoured over -casein--lactoglobulin interactions. Figure 5 

summarizes the different interactions that take place between casein micelles and denatured 

whey proteins when different pH mediums are considered prior to heating. 
 

 
 

Figure 5.  Schematic representation of the interactions between casein micelles and whey 

proteins occurring in milk during heat treatment for 10 min at 80 °C at pH values ranging  

from 6.35 to 6.9. 

Native whey proteins are not included in the figure.  

Source: Adapted from Vasbinderet al. (2003) [118]. 

 

Anema [40] explains this phenomenon by stating that as the pH of the milk is increased 

from about pH 6.5 to pH 7.1 before heating, -casein progressively dissociates from the 

casein micelles so that, at pH 6.5, the majority of the -casein is associated with the casein 

micelles, whereas at pH 7.1, about 60–70% of the -casein is found in the milk serum. As 

the denatured whey proteins interact with the casein micelles via disulfide bonding with the 

-casein, this dissociation of -casein probably explains why the association of the whey 

proteins with the casein micelles is pH-dependent. It is important to note that a more severe 

heat treatment at a constant pH will cause more denaturation of whey proteins, but the ratio 

of denatured whey proteins associated with the casein micelle and present in aggregates will 

remain constant [118]. Heat-induced interactions of casein micelles and whey proteins are 

also affected by the casein to whey protein ratio of the milk base. It is believed that -casein 
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presents limited number of available binding sites for -lactoglobulin association. Thus, 

when these sites are saturated, denatured whey proteins will interact with each other, 

increasing the amounts of whey protein aggregates in the system. According to Cho et al. 

[123], after a heat treatment at pH 6.7, a maximum number of disulfide bonds between -

casein and whey proteins is formed when using a casein to whey protein ratio of 4:1 [124]. 

Calcium ions promote the association of β-lactoglobulin with casein micelles, perhaps due to 

the ability of ions to influence the degree of electrostatic attraction or repulsion between β-

lactoglobulin and κ-casein by providing an ionic environment around the interacting 

molecules. Additionally, salts could be affecting the reactivity of thiol groups. Furthermore, 

lactose concentration is a limiting factor for the whey protein denaturation. The glucosyl 

residues are bound to β-lactoglobulin via gluconic acid or melibionic acid, making this whey 

protein fraction stable against heat treatment. Lactose concentrations of milk with normal 

chemical composition do not have any negative effect on the rate of whey protein 

denaturation. However, if the lactose level of yogurt milk is increased during standardization, 

the rate of whey protein denaturation is likely reduced. In order to overcome this handicap, 

milk should exposed to a higher heat treatment (at >90 °C for 10–15 min) [41]. The 

association of denatured whey proteins with micellar caseins on heating gives improved 

yogurt texture and gel strength [125]. Yoghurt prepared from heated skim milk and 2% 

protein from whey protein concentrate had higher storage modulus, firmness, water holding 

capacity and a denser microstructure than those prepared only from skim milk [126].  On the 

other hand, it is thought that native whey proteins do not interact with casein micelles during 

the acidification of unheated milk and act as a destructive filler, or a structure breaker, in acid 

milk gels [51]. Lee and Lucey [127] reported that yogurt gels made from milk heated at high 

temperatures [>80C] presented a higher cross-linked and branched protein structure 

with smaller pores than gels made from milk heated at low temperatures [31]. This 

branched microstructure increases the elasticity, gel strength and water binding capacity of 

the final gel [38, 121, 127–129]. Therefore, yogurts produced from heated milks will have 

greater firmness and lower susceptibility to syneresis. According to Sodini et al. [51], a 

heating that ensures 60 to 90% of -lactoglobulin denaturation generally optimizes both the 

WHC and the rheological properties of the final gel. On the other hand, a too severe heating 

generally (above 90% -lactoglobulin denaturation) has a slightly detrimental effect on 

yogurt’s physical properties. 

 

 
5. Important factors that define yogurt quality 

 

Two of the most important parameters that define yogurt quality and determine 

consumer acceptance are, unquestionably, the textural attributes and the WHC of the gel 

network [31, 37, 38, 51, 54, 130–132]. 

 

5.1. Rheology 
 

Textural attributes, including the desired oral viscosity, are very important criteria that 

determine the identity, quality and consumer acceptance of yogurt [130, 131, 133]. Although 

texture is related to the sensory perception of a food product, rheology and structure of a 

product evaluated by instrumental methods also provide relevant information on its textural 

properties [51]. Skriver et al. [47], Richardson et al. [134], and Stanley and Taylor [135] 

reported that sensory texture analyses are highly correlated with the rheological properties of 

stirred yogurt and other semi-solid foods. Due to this fact, rheological properties of milk gels 
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are important physical attributes which contribute to the overall sensory perception and 

functionality of these products [37]. 

Yogurt is defined as a weak viscoelastic gel system which is unable to keep its structural 

integrity during high shear [31, 53, 67]. Several authors reported the advantages of using 

oscillatory dynamic tests over other destructive rheological techniques (e.g., penetrometer, 

rotational viscometers) to evaluate the rheological characteristics of viscoelastic semisolid 

foods [31, 53, 67, 69, 136, 137]. The principal advantage of dynamic tests is that they enable 

measurements to be made without incurring structural damage to the samples. Therefore, this 

type of tests can be used to relate dynamic rheological parameters to molecular structures 

[137]. On the other hand, each penetration into or rotation in a gel network causes a 

breakdown in the elastically effective bonds, and the procedure thus fails to measure the 

actual physical characteristics of the gel. Once the gel structure is disturbed, it is rarely 

possible to re-form the gel structure in the same way, because yogurt is a metastable gel and 

any change in its enthalpic/entropic nature creates irreversible deformation. Thus, any kind 

of destructive effect may lead to atypical physical properties in the yogurt, and provide 

erroneous results. Due to this fact, dynamic studies are much more reliable than destructive 

rheological techniques for studying the physical properties of concentrate yogurt [67]. 

Consequently, during the last decades, dynamic tests have been widely used to investigate 

the rheological aspects of acid milk gels [43, 44, 48, 49, 113, 114, 116, 127–129, 138–148]. 

Small amplitude oscillatory tests are used to compare the rheological aspects of experimental 

and commercial samples of concentrate yogurt. Small deformation is defined as a small 

relative deformation which, when applied, does not disrupt the gel network structure, i.e., 

within the linear viscoelastic region. This type of test involves applying an oscillatory 

(sinusoidal) stress or strain to the material and measuring the strain or stress responses [31]. 

The magnitude and phase shift of the transmission depend on the material’s viscoelastic 

nature. Much of the stress is transmitted in highly elastic materials while it is dissipated in 

frictional losses in highly viscous ones. The phase shift is large for highly viscous materials 

but small for highly elastic materials [149]. Several rheological parameters are determined in 

a small amplitude oscillatory rheology test. The storage modulus (G') expresses the magnitude 

of the energy that is stored in the material or recoverable per cycle of deformation (indicates 

the solid-like properties). The loss modulus (G") is a measure of the energy which is lost as 

viscous dissipation per cycle of deformation (reflects the liquid-like properties). Therefore, 

for a perfectly elastic solid, all the energy is stored, that is, G" is zero and the stress and the 

strain will be in phase. In contrast, for a liquid with no elastic properties, all the energy is 

dissipated as heat, that is, G' is zero and the stress and the strain will be out of phase by 90°. 

For a specific food, magnitudes of G' and G" are influenced by frequency, temperature, and 

strain. For strain values within the linear range of deformation, G' and G" are independent of 

strain. The loss tangent (tan ) is the ratio of the energy dissipated to that stored per cycle of 

deformation and indicates the type of viscoelastic properties in a material. A high tan value 

(i.e., G’’ >G’) means that the material has liquid-like behavior [31, 150]. These parameters 

are defined as follows: 

 

G′ = [
𝜎0

𝛾0
] cos 𝛿                                             (2) 

G′′ = [
𝜎0

𝛾0
] sin 𝛿                                                      (3) 

tan 𝛿 = [
G′′

𝐺′
]                                                         (4) 
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where 0 is the amplitude of the share stress, 0 is the amplitude of the strain and  is the 

phase angle difference between the stress and the strain [38, 150, 151]. In acid milk gels, the 

G’ is determined by the number and/or strength of non-relaxing protein bonds (covalent 

bonds), whereas the G’’ is determined by rapidly relaxing bonds (non-covalent bonds) [53]. 

The G’ and G’’ are similarly related to the spatial distribution and the number of protein-

protein bonds, which, therefore, suggests that tan  is related to the nature of the protein 

bonds [69]. 

 

5.2. Whey separation 
 

Whey separation, i.e., the appearance of whey on the surface of a milk gel, is a common 

defect in fermented milk products such as yogurt [38, 132]. Whey separation negatively 

affects consumer perceptions of yogurt, as consumers think there is something 

microbiologically wrong with the product [31]. Due to this fact, manufacturers try to 

prevent whey separation by increasing the total solids content of milk, subjecting the milk to 

a severe heat treatment (to increase whey protein denaturation) or by adding stabilizers such 

as gelatin, pectin, starches, or gums [37]. Spontaneous syneresisis the usual cause of whey 

separation [31].Syneresis is defined as shrinkage of a gel and thisoccurs concomitantly with 

expulsion of liquid or whey separation. Spontaneoussyneresis is contraction of a gel without 

the application of any external forces(e.g., centrifugation) and is related to instability of the 

gel network (i.e., largescale rearrangements) resulting in the loss of the ability to entrap all 

the serumphase [132]. Hence, excessive rearrangements of particles in the gel network are 

responsible for high levels of whey separation [105]. Previous studies showed that several 

manufacturing conditions, such as low total solids content (protein content) of the mix, very 

low acid production (pH ≥ 4.8), excessive heat treatment of the mix, and very high incubation 

temperatures, promote whey separation [38, 105]. Increasing content of protein by whey 

protein concentrate addition decreases the syneresis [152]. Whey separation is intimately 

related to the gel network’s microstructure. Extensive rearrangements of protein particles in 

the gel network may be associated with increased local breakage of weak protein strands that 

make up the junctions in the network. This may result in the formation of weak spots and a 

less stable gel network [131]. Several authors reported that a high number of relaxing (non-

covalent) protein bonds present in the gel favor rearrangements in the network and results in 

greater whey separation [105, 116, 127, 153]. As the number of non-relaxing (covalent) 

protein bonds increases, the level of rearrangements in the gel network decreases and a lower 

level of whey separation is obtained [105, 116, 127, 154]. Hence, high tan  values together 

with low G’ values can be correlated with high levels of whey separation [105]. On the other 

hand, whey separation is also related to the permeability of the gel network. Finer networks 

with a higher level of cross-links and smaller pores will have less of a tendency to exhibit 

whey drainage under the force of gravity than coarser, more open structures [145]. 

 

5.3. Clusters formation 
 

Undesired clusters can have a negative effect on a yogurt’s texture.  Numerous 

manufacturing parameters, such as severe heat treatments, excessive whey protein to casein 

ratios, high incubation temperatures, certain types of starter cultures and the use of excessive 

amounts of starter culture, are associated with textural defects of stirred yogurt like graininess 

(particles) or surface roughness (irregularities in the yogurt matrix) [51, 155]. Remeuf et al. 

[114] reported that graininess can be related to an increase in the casein micelles size caused 

by the interaction of micelles with denatured whey proteins. Puvanenthiran et al. [145] 

associated the observed granny texture with the formation of big whey protein aggregates. 
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Although manufacturing parameters have a direct influence on the formation of clusters, 

according to Lee and Lucey [31], stirred yogurts are likely to have clusters of protein 

aggregates which are presumably created by the collisions and shearing during the mixing 

process involved in their production.  

 

 

Conclusions 
 

Future research should be focused on the production of concentrated yogurt by direct 

recombination. It offers important advantages over other industrial production methods as it 

is more environmentally friendly and the product can be more nutritious. Still, rheological 

properties of recombined concentrated yogurt are different from those of strained yogurt. 

Usually they form weaker gels than those made by traditional or UF methods. Different dry 

dairy ingredients (especially with elevated content of whey protein) should be used for 

production of concentrated yogurt. Such products could be used as supplements of diet for 

sportsmen and physically active people. In the future it is also crucial to find an effective 

formulation for producing a recombined non-fat, additive-free type of Greek-style yogurt. 

Increased whey protein content (in form of whey protein isolate with low content of fat) could 

solve the problem of weaker texture of non-fat product.  
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